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ABSTRACT

The purpose of this report is twofold: (1) To review some aspects of the theory on

density fluctuations in a plasma (Part I) and (2) to introduce a novel method for
the determination of the fluctuation spectrum of a multicomponent plasma (Part II).

Part I attempts to follow the theory that starts from first principles (dynamics of
point-charged particles) and leads to the derivation of coarse-grained properties

of a plasma in order to compute the response of the plasma to an externally ap-
plied longitudinal field. By applying the Nyquist theorem to the response func-

tion of the system, we derive the fluctuation spectrum.

Part II introduces a technique by which the space and time-dispersive response

function of a plasma that has an arbitrary number of charged constituents can be
evaluated with little effort. The technique consists of reducing the problem to
one in network theory. The network corresponding to a plasma is a bank of ca-
pacitors in parallelwith each capacitor representing one constituentof the plasma.
A plier's entry at any desired location in the network determines the response

function to an applied external potential.
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INCOHERENT SCATTERING FROM A PLASMA*

I. THE ELECTRONIC SPECTRUM

A. INTRODUCTION

Recent work on incoherent scattering from a plasmal - 3 has centered on the calculation of

the ionic effect on both the spectral quality of the scattering cross section and the integrated

scattering cross section. Since the cross section is proportional to the mean square of the fluc-

tuation of the density of the system, this work effectively consisted in generalizing earlier re-

sults obtained for the fluctuations in an electron plasma by Pines and Bohm 4 This generalization
demonstrated that the contribution to the cross section from the ion-carried electron fluctuations

is far more important than the contribution from the pure electron fluctuations. However, we
believe that the basic issue of what it is that we are scattering from can be discussed without

carrying along the cumbersome formulas that include the effect of the ions.

In this report we attempt to follow the theory that starts from first principles (dynamics of

point charged particles) and leads to the derivation of coarse-grained properties of a plasma

(the plasma as a continuum) in order to compute the response of the plasma to an externally ap-

plied longitudinal field. We then compute the energy input from the external field to the plasma

and show that it is nonzero, even in a plasma without collisions. However, when there is a dis-

sipation process in a system, a fluctuation is associated with it. By applying the Nyquist theorem

to the system we proceed to derive these fluctuations. We further indicate that, for large wave-

lengths, these fluctuations become, in effect, organized oscillations at the plasma frequency wp

We then conclude that in a phenomenological way, scattering of an electromagnetic wave from a

plasma can be described as scattering from a density wave.

B. THE EQUATION OF MOTION FOR A PLASMA

A complete investigation of density fluctuations in a plasma would require study along the

lines described by Tchen 5 or Rostoker and Rosenbluth.6 Although there has never been any doubt

as to the soundness of the basic dynamic principles from which we must start in order to describe

a plasma and its fluctuations, the statistical processing of the basic equations pertaining to many

interacting particles (to derive macroscopic properties of the system) introduces considerable

difficulties. Many compromises and mental models have to be used in order to keep a clear and

useful link between first principles (dynamics, statistics) and final results (macroscopic vari-

ables). By keeping track of the meaning of the compromises and of the models we may hopefully

retain the connection between a microscopic model and a macroscopic result. To this end we

have adopted the method of Klimontovich 7 which, though deceivingly simple, is very helpful for

following the mathematical manipulations.

* This report contains notes on some aspects of the problem of incoherent scattering from a plasma. These notes
were prepared in the summer of 1961.



Consider now a system consisting of N electrons. When electromagnetic interactions are

neglected, the Hamiltonian of the system is

N N

1 -2 
1

i:t i~j

where pi and qi are the momentum and the position of the i Particle, U(qi is an external po-

tential arising from an external force acting on each individual particle and V(-qi -- q4) =

e/ qi -q! I is the electrostatic interaction potential of the particles taken in pairs. Introducing

the function N(pqt),

N
N ( -P t) ( - -6 ( - Pdi a o - i , ( )

i=4

for the number of particles at pq, we can write for any function g(pq),

N

5 g(Pq) N(_pt) d-dF= Z g(-pifqi )

1=1

Accordingly, the Hamiltonian can be written as

H p N(q)-pq N(pL e -t) N(p' q't) djidp'dqdq'

+5 U(q) N(_pt) dpdq (3)

We now note that, in a strictly formal way, the Hamiltonian density in phase space can be written

as

AN p= N(pt) + e Z  N(qt) N(I'-it) dI'd ' + U(q) N(jt)

therefore, its derivative with respect to N is

AH i C e2
= - p + e N( 't) dY'dq' + U(1)

Here X represents the Hamiltonian of one particle; therefore, we can use it to write the equa-

tions of motion for this particle,

- 8x3
q- m

-- _ 8 C e 2  OU(q)
=- N('Ij't) dp'di' - (

Sq Sq If-f'I Sq

where and q are the canonical variables. Introducing these variables in the continuity equa-

tion

z



aN(t) 3N(t + 8N( jt) = 0

we finally obtain

3N( qt) 5 aN(jit) -(Q e2 N(-q't a'F N(pqt)
m q 84 qI - j1 I a

_ 3U(j) 8N(Tqt) _ 0 (4)

Equation (4) is an exact equation describing the microscopic evolution of the random function

N(pqt). Gross 8 has pointed out that the procedure used by Klimontovich poses a number of ques-

tions; nevertheless, Gross was able to derive the same equation for N(-pt) by using a more di-
rect method. In any case, the surprising fact is that we can obtain an exact microscopic equa-

tion for the evolution of N(pqt) which looks so much like the well-known transport equation of
Boltzmann-Vlasov. To be of any practical use, Eq. (4) has to be averaged in order to derive a
macroscopically meaningful density from the highly discontinuous N(pqt). In the macroscopic

description of the system we are not interested in the complete set of mechanical variables, but

only in a much more restricted number of variables such as the energy, electric currents or
charges pertaining to macroscopically infinitesimal regions of the system. In effect, we are in-
terested in a formulation in which density of matter, charge density, etc., are continuous func-

tions of position and time. The "homogenization" of the discrete system is made through the

classical statistical methods by considering an ensemble of similar systems. For our purpose

we need only note that

<N(qt)av= f(-Pt)

where f(pqt) is the distribution function, usually known as the one-particle momentum distribu-

tion function. With this step the individuality of the particles in the system has been lost, and
we must begin to think in terms of a fluid. Consider the ensemble average of all terms in Eq. (4),

+f 0 .a + f~) eZ dp'd~q' KN-'qt) cINpt)>
_q ap av

ED Ul(ql aNlpqtl) (5)

The average inside the integral is a pair distribution function

<N( qt) N(F'j't1>av 2 t)

denoting the extent of the correlation at one time t of two "particles," one at q, the other at
q' and with respective momenta p and p'. As a first approximation, we assume that the pair

distribution function can be separated as (Ref. 7)

f2(pp', qqf, t) = f (Pit) f (pFIt) + O(pp, qq', t) ,(6)

where again 4 is a pair distribution function. It can be argued that since 8U(q)/aq represents
an external force, not necessarily of a statistical nature,

3



NCt> = 3 fU(0 x 0 (7)

Introducing Eqs. (6' and (7) into Eq. (5), we obtain

+p qa + f~t : -S1i f(p~q't) d-p'dq' . f(

=Fext( ) ,f(.t) + _ eZ O¢(p',q',t) cfdd' I (8)

It is now easy to obtain the standard form of the Boltzmann-Vlasov equation from Eq. (8), and

also the equation which has been used by Gasiorowicz, et al., for the test particle. First con-

sider Fext(-t) = 0 and 0(pp'Fq't) - 0 and call

pint(t) e2  f(pqt) dpd
aq ,qq

then

Ff _ . 8 + pint. Of =0 (9)

In the evaluation of the integral, q = q' is excluded; therefore, Fint (t) is the internal force act-

ing at a point q and is due to all other particles in the system. We note that Pint is the self-

consistent force in the system and that Eq. (9) is an approximate version of Eq. (5) which does

not take account of the pair distribution function. We know, however, that the two-particle dis-

tribution function (itself a function of the one- and three-particle distribution function) has im-

portant properties10 leading to the Debye screening potential. It is therefore expected that the
simplification leading to Eq. (9) would require further justification. Assuming that such a justi-

fication exists, it can be extended to the case where Fext # 0. Equation (8) then becomes

a t) + - Of -- ) _ 5 dp'dq' eZ f(p't) f(pqt)3-q+ aiJ t- a-P

= - Fext(qt) . f(qt) (tO)
ap

This is the equation used by Gasiorowicz. It will be used here for the determination of the re-

sponse of the system to an applied external force rather than for the response of the system to

a test particle. Since the observable quantity in a plasma is the macroscopic density and not the

distribution function, the momentum will have to be integrated out of the equations to determine

the density

= t f(-pqt) dP_

Consider then, that the variations of the density from the average value are due to variations of

the distribution function from its equilibrium value fo(p ),

f(Tt) = f 0 (p2 ) + f, (qt)

4



Introducing the above into Eq. (10) and retaining only linear terms, we obtain*

8f + a -d e f Bf 0 ffo
t- + d dq_ d Y i _ - Fext(qt) - 3fi

Equations (9) and (11) are widely used equations for the distribution function f. They have
deficiencies, but they represent an improved description of the plasma when compared with the
classical Boltzmann equation with the collision term. The main reason for this is that, in an
ionized gas, the particles are constantly under the electrostatic field set up by all the othe, par-
ticles; in a neutral gas, the particles are virtually moving in free space, except when they come
close to each other. In an ionized gas "collisions" are not discrete events unless the collisions
are with neutral particles that may happen to be in the plasma. Whatever success has been de-
rived in the discussion of fully ionized gases can be attributed directly to the electrostatic term
in Eq. (ii). Despite its shortcomings, Eq. (11) can at least be used to derive a number of useful
macroscopic parameters such as the charge density, the current density, and the electric fields.
In the following we shall compute the charge density induced in the system by an external poten-
tial. We can picture, for example, a plasma confined between the two plates of a capacitor and
the external field due to a battery connected to the plates. For all practical purposes we shall
then deal with a dielectric as described in electrostatics.

C. THE LINEAR RESPONSE TO AN APPLIED FIELD

The density induced by an external force can be computed in a straightforward manner if

we Fourier-transform Eq. (11). Let

flpt =f(PIiw) exp [ik" q - it t] R

fi(Pkw) = ft(Pqt) exp [-ik. q + iwt] dqdt

Multiplying Eq. (11) with exp [-i1i. - + iwt], integrating over and t, and noting that withq
e-- 2  4re2Vk) = exp [- ik -Q] V(Q)dQ = Q1 exp[-ik • Q] dQ= 4rek2

we obtain

(-iw + ik• -/m) f (ik) - ik 4 e 2 S f,(T'q'w) exp [- ik •'] d'd' af 0

f0
= pext (kw) • f

ap

or, since ff, ('-'w) exp [-ik •q' d''d'' = 6n(klw), it follows that

* The term inside the integral with fo has been neglected since it is canceled by the neutralizing positive charge
in the system.



4reaf 0  af 0
(-iw + ik p/m) f(pku) - ik 4 ke z 6n(k) 3T = -Fext(-K) •

Dividing by (-iw + i.k •/m) and integrating the resulting expression with respect to p, we have

- k 47reZ (a/aP) f0 d7 (/Pf0

n(kw) - n(ko) i e -i + ik dp = -Fext(kW) • - dp ,
_kT iw + ik /n -iW + ik p/m

or, solving for 6n(k w),

ipext('W) f (a/8P) f0

5n(kwo) = W -k p/m (±2)
+ Z (8/ap) f0

k 2  -i. p/m

Equation (12) gives the desired expression for the response of the system to external force. If

this force'is of electric origin, then we can write F = -eE = eV-q( or, in kw-space, F(kw) =

eik' (kw). The induced electric charge p(kw) =-e6n(k
o ) can then be written as

p(kw) = C(kw) ext(i.) , (13)

where the response function C(kw) has the form

-eZ f " (8/Bp) f0 -

C(kw) = _ _ w- kp/md (14)
2 -. ( d/p)f0

k -k. p/m

The use of C has been introduced in order to indicate that what we have computed is a capacitance.

This point underscores the fact that, at this stage of our calculations, we are dealing with a model

of a plasma that is completely divorced from any concept of granularity in the microscopic scale.

Before discussing the properties of the response function, we must proceed with computations

that will give a more appealing form to C(kw). For this purpose we adopt the notation that has

been introduced for the first time by Lindhard.1 This notation has the advantage of retaining

some of the concepts of electrostatics in continuous media. Lindhard introduces the space and

time-dispersive dielectric constant (kiw) in the following way. He begins with the linearized

version of Eq. (9)

af± Of afin1 -4.P . 'I + pint oit) •-- 0 (1)
t M . q p

which he proceeds to solve along the lines used earlier in this section. Fourier-transforming

Eq. (15) and solving for fl(pkco), he finds

- it - (88)f 0f, (pkw) = -iF'n(k.) " /

therefore,

6



6n(k) =-iFint(kw) - (8 ) f0 d-P (16a)

However,

Fint(k) = ei( int(iw)

and
-p _en r_ 2 S k" (aP) f0  1

45p(K-) = -ef-(/) e 8/ d-p (int( K) (16b)

Let us now turn to the basic theory of electrostatics in continuous media. We know from

this theory1 2 that:

(a) The dielectric polarization in the medium is defined by

ind <p>-v.

where <p> is the average charge in the medium.

(b) By definition the internal electric field is given by

V - R= 47r <p>-47rV P

(c) By definition

E + 4rP =D

(d) The constitutive equation between D and E is given by

D=-E

From the above it follows readily that in kw-space we have

pd(Kw) = -i-k - P(k ik [D(kw) -E(kw)]

On the other hand we know that, in a frequency-dispersive medium, D(w) =e (W) E(wO). General-

izing this relationship to a space-dispersive medium we write D(Kw) = E(kw) f (kw), therefore,

Pind kW)
pnd( -) -= e(kw) -11 E(kw)

k 2
T-- (i((p (kw) (17)

Comparing Eqs. (17) and (16b), we then have, according to Lindhard, the definition of the "longi-
tudinal dielectric constant." It is called longitudinal because it describes electrostatic effects in-

side the medium and is given by the expression

L- 4we 2 ~k(aa)fo-
E L('Kw) + ,2y(a/5., d_-(8

k 2  W - p/rn

Returning now to our equation for the induced charge due to an external potential [Eq. (t3)],

we obtain

7



p(kk) k I EL w) - ] ext() (i9a)

k--- 2 - ext~ko !b

and

C( O) =- -. - I (20)

For the explicit determination of EL(kow) we need only note that, in the integral of Eq. ({8), we

have to make the following interpretation of the singularity:

where Ob denotes the principal part. Simple integrations then give

L (kk) = i + - IR(kw) (21)

D

where XD is the Debye length

2 KT
D = e2no

and

R(kw) = R(x) = R60WM) = I - 2xe - x  eZ dz (22)

2

l(kw) = I(x) )= k xe-X (23)

where v m = 2KT/m is the mean thermal velocity of the electrons at temperature T. It can be
easily shown that

E 1 - Wp 2  for >>1 (24)

D ~ vm

E L (k ) 1 +--1 for W < (5
(K-D) kv << m

It is important that at the limit of small wave numbers the longitudinal dielectric constant

goes to the classical dielectric constant E(w) since we find, in both constants, the plasma fre-

quency w p. However, the two constants have a completely different meaning and cannot be used

indiscriminately. The longitudinal constant implies density waves similar to acoustic waves

with a frequency w p and a wave number k along the direction of propagation. On the other hand,

the classical dielectric constant implies a propagation of a transverse electromagnetic wave. A

space-dispersive, transverse dielectric constant can be developed for transverse propagation in

order to generalize the classical dielectric constant, but it is outside the scope of this report.

8



Let us use now the two limiting forms of EL(kw) in Eq. (19). For w/kvm >> 1, we have

o(ko) ++ l 7 o2I = - 1 D(w) Oext(,Ro) (26)

or, using the continuity equation,

[V 2j (k,) .+ IExIk
[w -WpJ

For w/kvm << 1, we have

P(kw) - +kZX t (27)

The first limit clearly indicates the singularity at the plasma frequency, the second limit indi-

cates the independence of the response function from the frequency. To obtain more insight we

will plot the function (4r/k 2 ) C(kw) = D(w). The imaginary part of D(w) that was lost while the

limit for w/lkvm >> 1 was taken can be reintroduced by the substitution

1 . P 1 + (co ±cop)

W E, W"-'--5W pp p

Thus

2

D(w) = = 1t 1 J
2 - p p
p

P_ t c +6(w "") -" 6(w + p)
21w- wo P+ p 1p
2p W+ p

The functions D'(w) and D"(w) are plotted in Fig. I. In a real situation the singularities will be

considerably smoother. This is indicated by the dotted curves. Before ending this section, we

shall derive some more useful formulas.

(wcJ/2) 8 (w ,-w)

I DI (W) 1, D"(w)

0

(w)

-(irj/2 ) 8 (Wp+c)

Fig. 1. The real and imaginary parts of the response function
are similar to the dispersion relations for an oscillator.

9



The use of Poisson's equation was inherent in the previous treatment. In fact, it is con-
tained in the equation

pin e2  f1(p' 't) dp'dq'

which, in kw -space, takes the form

qp(kw) f - Rf ftp)dp (28)

or

k 2 pint(KO) - 4fefn(ko) = 4pint(k)

which is the Fourier transform of
V2 int(lt) = - 47pint-(qt (29)

If, however, external charges are introduced in the medium, Poisson's equation would have to

be written as

2 itext
VTp(-t) = - 4rpint(t) - 4vpe (t)

or

k 2 (kw) =4rpint (kw) + 4rpeXt(kw) (30)

Introducing Eq. (17) for the internal charge, we then haven

kZ L(kw) 9(kw) = 47Pext(kw) (31)

Equation (31) gives the response of the internal potential to an external charge. Equation (19)
can then be considered the dual of Eq. (31), since the first corresponds to a circuit driven by a

voltage source and the second corresponds to a circuit driven by a current source.

Combining Eqs. (17) and (19) we obtain

int = extlKW) (32)

Further, since tot = int + ext, we have

-Ptot( Oi)  L L(KwJ) + 1 (P ext( )  (33)

.E L(kc ,)

To complete this section we include the Kramers-Kronig relationships. These relations

result from the principle of causality and should be applicable to any well-behaved response

function. Although these relations have to be reworked for a space-dispersive medium, it is be-
lieved that, for low thermal velocities of the electrons, as compared with the velocity of light,
no serious modifications need be expected. Separating the response function C(kw) into its real

and imaginary parts

C(kw) = C'(kw) + iC"(ko)

. . . .. . . . . .. .. . ..1 0



the Kramers-Kronig relations are

C'(kw) = Ct1(kw dw (34)

and

C"(kw) = -4 w- dw (35)

The following relations can also be derived:

C(kw) e iwt = C(kw) e i  
dw (36)

= Wk --

where the plus implies t > 0 and the minus implies t < 0. Using Eqs. (34) and (20), for w = 0,

we find the useful

C'(kO) =_ 1 P C (kw) d)
y W

However, from the explicit expression for C, we also find

-Re cL(O PYII w(7
CL (kO) In -Lk )  1+kZ(37)

D. ENERGY INPUT INTO THE SYSTEM

With the available results we can now proceed to determine the energy input to a plasma from

an external force. In the usual theory of plasma, this energy input can occur only because of the

collisions of electrons with neutral particles in a gas that is not fully ionized. In the simplified

form of this theory the collision frequency is the important parameter. This, as we have noted

in Sec. I-B, implies that the electrons are moving in the system on straight trajectories until

they encounter a neutral particle. In a fully ionized gas the collisions have to be interpreted on

a continuous basis, and we may expect that the continuous interaction of a test particle with the

field of all the others may lead to more pronounced "deflections" than a single short-range colli-

sion. In any case, these continuous collisions should lead to the loss mechanism inside the sys-

tem. We now place our plasma thermodynamically in an insulated container and electrically
z

between the plates of a condenser. Then we go back to Eq. (11) which we multiply by (1/2) mv =

(1/2m) p and integrate with respect to V or p. We expand f into the equilibrium f 0 and f1 , but

this time retain the nonlinear terms. We note that terms containing (a/3 ) f 0 are odd, and

therefore yield zero on integration. What remains is

1m i - P -T -_ex,

The first term gives the rate of change of the kinetic energy density K, the second term

gives the divergence of kinetic energy current vector SK, while the other two terms give

-- •f (p/m)f 1 (pqt)dp. However, F =-eE and, since by definition the average current in the

system is - (e/m) f fI (qt) d = -(it), we finally obtain

aK+ . -int -ind -ext -ind (38)
t + j =-

11



The interaction energy, therefore, is given by the right-hand side of Eq. (38),

a6 _ ext(t) ind( t)

T-S ext (k¢W)"- Jind (k'w ) exp fi(ki+ 'q - i(w0 + w') t ]kd- d

(2r) 27r)

Integrating over time t and space q, we then obtain

$ -$ dtdq ; Eext(kW).-ind( d_

The continuity equation

becomes p(kw) = k j (k)/w in kw-space. Since E(kw) = -ik o(kw), we can write

md dkdco

-S' dtdSq = i.,ext(k,)o Pid(-k, -,)
(2 4)

and, remembering Eq. (19) for the response to an external potential,

dtd-q= iWext (k) C(-k,-CO) (Pext(-k,--.) dkdc,

i.I io ext(k,) 1c*(kW) dkduw
(2r)4

1 iWI (ext(cw)12 [* (w) _C(K),,dkdco

(2)4.

or, finally,

dtdq 1ext(,kw)12lmrC(-kw)] dkdo4 (39)at ~(2ff)4

From Eq. (20) it follows that

Im [C(kw)] = T- Im (40)

The results we have just obtained are very important. In the first place, we have shown

that, as expected, the continuous interaction of the electrons through the electrostatic forces

leads to dissipation. Then we have indicated a specific method for evaluating this dissipation.

Finally, we have put all this in a very appealing form through the longitudinal dielectric constant.

However, the most significant property that can be deduced from the above discussion comes

from a consideration of the theory of Callen and Welton i 3 According to this theory, whenever a

dissipation process exists in a system, a fluctuation is associated with it. This theory can be

considered as the generalization of the older theory of Nyquist. We shall not reproduce here the

derivations of Callen and Welton. Nevertheless, a very short account of some of their results

may be helpful. They show, for example, that dissipation involved in viscous drag on a moving

12



airborne particle leads to a fluctuation in position and velocity of the particle. They show that

the acoustic radiation resistance of a small oscillating sphere leads to a formula for the pressure
and density fluctuation in a gas. They show that radiation resistance to acceleration of an elec-

trical charge leads to a fluctuation of the electric field that is equivalent to black-body radiation.

In the next section we shall proceed with the calculation of the density fluctuation in a plasma.

E. DENSITY FLUCTUATIONS

To derive the fluctuation spectrum, Callen and Greene 1 4 argue as follows. They first sup-

pose that the system is under the influence of an external force from t = -M to the time t = 0
when the force is removed. The system is then left on its own. Let us compute the transient

response of the system, using the results obtained in Sec. I-C.

From Eq. (1 9) we have

p(qt) = C(kw) ,ext(kw) exp [ik. q - iwt] dkdw (41)
(2r)

4

If the externally applied potential was constant to t = 0 and, acting at the position of the "particle"

at q = 0,

ext(t) - 9 06(q) t.< 0

ex t >I
t>0 ,

then

(P ext(kw) - f )+6-- }

Introducing this into Eq. (37), we obtain

p()t) =- 4 dke1 q 7C(kO) + 1 C(kw)- dw (P0 (42)

From Eq. (36) and for t > 0, we have

C(k) = 1 t C(kw)e + i t w

and therefore Eq. (41) can also be written as

d e~ik'q __l__ o~
m i ) = -y (2 )3 1 ri W I O ~( 3

Equation (43) describes the evolution (decay) of the system after the driving force was removed.

Callen and Greene further argue that, since the autocorrelation of the density in time as

given by

R (p) = <p(t) p(t + T)> = $ dp'W(p') p' <T", p'Ip> (44a)

(where W(p') dp' is the probability of finding p in the range p' < p < p' + dp', and <T, p' p> is

the expectation value of p at a given time if it is known that p had the value p' at T seconds

earlier) and since the expectation value of p is, in fact, given by Eq. (43), there is a clear con-

nection between the autocorrelation and the response function. The above results should be

13



generalized to include spatial variations that are applicable to our problem. Instead of Eq. (44a)

we must consider

R(Q, T) = <p(q, t) p(q + q, t + ")> dp'W(p') p' <Q, T; p' P> , (44b)

where <QT, p' I p> is the expectation value of p at a given time and space point if it is known that

p had the value p' at T seconds earlier and at Q centimeters farther up. By using the above

arguments we then find, according to Callen and Greene, that

R( -) =- d- Q C (K) cos WT dw , (45)
ri (27r) 3 1

where K is the Boltzmann constant and T the temperature. Equation (45) is the result we wanted.

Now we shall seek the spectral form of Eq. (45). We first note that

Qo

R(IQ, r) = lir 55V 1,t;TV) p(q+ Q, t + r; TV) dqdt
T,V T

where, as usual,

.O

lim T 5 p(q, t; TV) dqqt = lim TVVddt
T,V T,V Y-T V
-. a -n -a

Then we denote by S(kw) the following expression

S(iw)= lim jL p*(kw; VT) p(kw; VT)
T,V TV

~~00

=5 dQdT exp[-ik. Q+i w] lim 55 (q, t; VT) p(q+Q,t+r; VT) dqdt

Thus

R(Q T) = S(k.) exp[ik. - iW T I -dk dcw (46)

YY ~ ~(27) Tr

Comparing Eq. (45) with Eq. (46) and observing that

C'(kw) = C'(k, -w) (even)

C"(kw) = -C"(k, -w) (odd)

we find

S'(ko) M-() KTC"rkW) (47)

14



where (2) is to be included only if w > 0 is considered. Equation (47) expresses the connection

of the spectral properties of the fluctuations in a system in terms of the imaginary part of the

response function. More explicitly for the plasma

S'(k w) = (2) #T I Jt kF . (48)

We can now use the Kramers-Kronig relation [Eq. (34)] to integrate Eq. (47) and find the "in-

tegrated spectrum"

S'(ko) dw =- - T C(kw) do =- TC'(kO) (49)

=KT -Re CL (ko) -

k2 t/k 2 A

= KT k2 D
4 1 + 1/k2x 2

D

2 k 2KT I=e n 0 47rezn k2 2
0 D

2 2 AD
=e no  22 (50)I + k 2A

We note that we have derived the fluctuation spectrum of the charge density. Since p*(k) p(k) =

e 2 n*(k) n(k),

2 2

k AD

By taking limits for wavelengths (k = 2r/A) very much larger than the Debye length and very much

smaller than the Debye length, we obtain

12  no , k D >> 
(52)

lno(kXD)2 kAD << I (53)

The first result, giving a fluctuation equal to the mean number of electrons per unit volume, is

not surprising since this is, in fact, the fluctuation of any system in equilibrium composed of

noninteracting particles. What is intriguing, but hardly unexpected, is that the fluctuation for

the long wavelength limit is considerably reduced. The intuitive interpretation of this result is

that the plasma (in a phenomenological way) is like a very tight membrane which can only execute

oscillations. To understand this model better, we have to look at the spectral quality of the den-
sity fluctuations. The spectrum is given by Eq. (48) (divided by e ). We have, more explicitly,

16n(-w) 12/n 0 _ KT kZ Irn{ h (KW))  (54)
47re2 n rw leL(Kw)I z
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since -Im(EL(c,K)} = Im(EL(ko)}. With the help of Eqs. (22) and (23) we find that, in the limit

of Wo/kvm >> 1, Eq. (54) becomes sharply peaked, indicating that the fluctuation spectrum loses
the quality of a random phenomenon. In fact, it does not represent a fluctuation, but an oscilla-
tion at a frequency very close to the plasma frequency w p.

Figure 2 plots the mean-square fluctuation of the electron density (in the absence of ions).
We note that, as an observation limits itself to smaller and smaller k's or larger wavelengths,

the spectrum of jan 12 becomes concentrated more and more near one frequency. In the other
limit (of small wavelengths), the spectrum is Gaussian, as it should be for a neutral gas. Since
the sharp peak near w - Wp corresponds to a long'idinal oscillation, we have obtained the natural

motion of the plasma in equilibrium.
To complete this picture, we shall now refer to the analysis of Gabor 1 5 for the density fluc-

tuations. First we note that the dispersion relation co = w(k) for the plasma can be obtained from
the numerical solution of

E L(KO) = 0 (55)

which gives the well-known relation

2+ 3KT k 2  
(56)

p m

The exact solution of Eq. (55) would give a curve as shown by the solid line in Fig. 3.t Now this
curve can be considered as the projection of the relative maxima of Fig. 2 on the plane
(co/kv O , kXD). Referring to the analysis of Gabor, who found that at large k's the dispersion
curve effectively becomes a diffuse line describing the degeneration of organized oscillations to
a random motion of the particles, we may plot a similar curve but with "equipotentials" around
the classical dispersion relation (Fig. 4). Thus the dispersion relation is a diffuse line for all
k's but becomes sharper as k is decreased. Gabor succinctly expressed this behavior of the
plasma as follows:

"For waves much shorter than the Debye length there will be no dispersion law,

but merely a [statistical] correlation between frequency and wave number."

It is the same picture that we get from the work of Pines and Bohm 4 who find that the density
fluctuations can only have wave numbers smaller than kD. For k > kD the plasma behaves sta-
tistically like a set of neutral particles interacting with short-range forces,

From the above discussion we conclude that a very useful model of scattering from a plasma
can be constructed if the plasma is viewed as a continuum whose density varies periodically in
space and time. We have to keep in mind, however, that these macroscopic density variations,
or fluctuations, reflect in our measuring scale the granular nature of matter in the microscopic
scale. In general, this granular structure is not accessible. What we see and measure are its
effects on our measuring apparatus. In the particular case of a plasma, we can conceive of
three distinct measuring systems. We can place the plasma between the plates of a capacitor
and measure the fluctuating voltage or current. We can send an electromagnetic wave through
the plasma and measure scattering due to fluctuations in the density (a continuum with uniform

t In terms of x = (w/vm) and a = kXD, Eq.(56) becomes a2 = (2x 2 - 3) - 1.
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density does not scatter radiation). We can, finally, send a beam of electrons through the system

and measure the interaction of the beam with the plasma.

io

1.5 10-1
a w.

1.22 0 to- to-, t- 10- 3
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2 = kI/kvo

Fig. 4. Dispersion relation in a plasma.
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II. THE ION-CARRIED ELECTRONIC SPECTRUM

A. INTRODUCTION

In Part I, we gave a general picture of the models, concepts, and techniques used to establish

the fluctuation spectrum of a plasma composed of electrons in a neutralizing sea of positive charge.

We reached the conclusion that, on a macroscopic scale, the fluctuation spectrum of the electrons

could be interpreted as a density wave propagating in the plasma with a given frequency W and a

wave number k, provided the measuring scale is larger than the Debye length. It would be rea-

sonable to expect that similar results could be obtained for a model plasma in which the role of
ions and electrons is reversed (where the ions are the particles moving in a neutralizing negative
charge). The only difference between the two models would come from the fact that ions are

heavier. Since the characteristic parameter xe = w/kVm e in the fluctuation spectrum of the elec-

trons is inversely proportional to the mean thermal velocity vine = 2 ,T/e where me is the
mass of the electrons, it is clear that the results obtained in Part I could be scaled and used for

the ions in a negative continuum if a new parameter were to be defined as

xi = xe M/m = (w/kVm, e ) N-M/m

where M is the mass of the ions.
In reality, however, a plasma can be composed of electrons, negative ions, positive ions,

and neutrals; therefore, the models with positive or negative neutralizing seas can only be use-

ful under restricted circumstances. In general, it is expected that the fluctuation spectrum of
any of the constituents of the plasma will be seriously affected by the presence of the other con-

stituents. On an intuitive basis, which rests on the assumption of perfect neutrality in a plasma,

we should expect that ion fluctuations (or ion density waves) will be closely followed by electron
density waves or fluctuations. On these grounds alone and because the ionic mass M is much

larger than the electronic mass m, giving an ion plasma frequency Wpj = Wp,e '-m/M, we can

make a guess that the portion of the electronic spectrum between W - 0 and W = Wp will definitely

contain an important contribution due to ionic waves. The problem is to compute the exact amount

of this contribution. As stated in Part I, all the effort in the theoretical description of the inco-

herent scattering from the ionospheric plasma has centered in the evaluation of the effect of the

ions on the spectrum of the electron fluctuations. The purpose of Part II is to introduce a

simple technique by which the response function of a plasma with an arbitrary number of charged

constituents can be evaluated with little effort. Nevertheless, we shall also indicate the method

by which the equation of motion for electrons [Eq. (4) of Part I] can be modified to include the ef-

fect of the ions.

B. THE EQUATION OF MOTION FOR THE ION-ELECTRON PLASMA

The generalization of Eq. (4) of Part I to derive the equation of motion for the ion-electron

plasma can be obtained by considering the Hamiltonian of the system with electrons and ions.

This Hamiltonian contains pair Coulomb interactions between electrons and electrons, ions and

ions, ions and electrons. If Ne(iqt) is the density of electrons and Ni(pqt) the density of ions,

from the procedure described in Sec. I-B, we can easily obtain the following exact pair of coupled

equations.
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N e(pqt) + ON (t) e Eext(t) 8N +e a_ i

x (i~pq't NeP' t)) 2Ne(put)

X (N.(p'q~t) - N -(p'qlt). e = 0 (57)
Op

8Ni(pqt) a N.(pqt) eL -ext aNi(;t)\
+ (qt) e - Oqat +M a q- (Ma - Iq [q'

3N i(pqt)
X {Ni(_P'qt) - Ne(p' 't)) • - = 0 (58)

where E e x t is the external field. The parenthesis in Eq. (58) indicates that the external field

acting on the ions can be disregarded if we are interested in the response of the electrons. Since

an externally applied field acts on both electrons and ions, it is obvious that disregarding the

term in parenthesis implies that the external field acting on electrons readjusts itself to a differ-

ent value.

The pair of equations for Ne and Ni can now be homogenized in order to obtain the coarse-

grained properties of the ion-electron plasma. Writing

<Ne(pit)> = f e(pqt)

<Ni(Pt)>av e

<Ne(P'q't) Ne(pt)>av = <Ne( 'q't)> (Ne(pqt)) + 'Pee(p'q'P4t)

= f e (p'q't) f e( t) + Vee

<N i (PIqet) Ne(pt>av = <Ni(p''t)> <Ne(pq) + ViepqIpqt)

= fi ( p'q ' t) fe (5t) + Pie

and corresponding equations for

<Ni(P'q't) Ni(pqt)>av , <N e(p 'q't) Ni(pqt )>av

we obtain a set of coupled equations by expanding the single particle distribution functions in the

usual manner (f ei = fOe,i(p ) +f i e , i ( qt)) and neglecting all the pair correlations (ee' (vii' (Pei' (Pie

_fle fe e2 ___ Y 1fe = ext- 0fOe
m - + e {f I(P'q't) - f (Pq't)} -

af +_f _e _ fi(,,)fe,,t. o=(_ - (q ) (9at m -q aq - lIii le ap m

a- TM - p Eexti-t) (60)

qt M aq- ap lq-qqI {fli( O fle-p
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Following the same technique as in Sec..I-B, we can determine

6nei = fe, i (pqt) dp

and also any desired response function. From this point on, the problem becomes a problem

of algebra. It is obvious that, if more components are introduced in the plasma, the equations

increase in number. The calculations required to compute the induced charges or the response

functions, also increase. To avoid these complexities, we have developed a method which re-

duces the problem to one in network theory. This method is discussed in the next section.

C. RESPONSE FUNCTION OF A COMPOSITE PLASMA

In Sec. I-C we argued that the plasma can be described in terms of the classical theory of

dielectrics. We shall now show that this model of a plasma can lead effortlessly to the calcula-

tion of the response function of any constituent of the plasma in the presence of the remaining

constituents. Consider first a dielectric on which we have placed an external charge p eXt. The

presence of the external charge polarizes the dielectric, or in other words, induces a charge

inside the dielectric. The potential inside the dielectric is given by Poisson's equation

V(qt) =- 4 rpnd(t) - 4 7pert(it) (61a)

or in kw-space

k2 (iw) 4 vpind(kw) + 4vpeXt(KW) (61b)

From Eq. (17) of Part I,

k2
ind(jw) = - [ [L( iw) _] (kw) (62)

relating the induced charge to the induced potential and the Poisson equation, we can then obtain

kZEL(kw) p(kw) = 4Tpext(kw) , (63)

the generalization of Poisson's equation in matter and for a space-dispersive medium. Suppose

now that the medium consists of a number of different charged particles. It is evident that the

external charge brought to the dielectric from outside will induce different charges on each of

the constituents. If each of the constituents were to be described by a dielectric constant of its

own, then we could write

pind(kW) -k L(k-u) _I I (Pj(kw) (64)

where the subscript j denotes the jth constituent. It is clear, however, that the potential in the

system has to adjust itself so that it will be common to all constituents; therefore, pi.(kw) = p(kw).

Since the total induced charge has to be the sum of the individual induced charges, we can write,

for the Poisson equation in kw-space,

r

k2 (kw) = -k 2 Z [i (k&)) -11 ((kw) + 4rpext(kw) (65)

j=1



In an electrostatic notation we could further write
r

- c(Kw)) (kw) p ext(kw) (66a)

where

k 2
C0 (kw) = -k

C (k[o)=--I , j LP- 0 (66b)
Cj (k NJ-

The above discussion suggests that the composite plasma can be described as a bank of "capaci-
tors" driven by a charge source. The equivalent network of the composite plasma is shown in
Fig. 5. This corresponds to the physical situation where, for example, an electron is shot at a

volume containing a plasma. It can also correspond to a situation in which neutral molecules in
the plasma are photo-ionized; in this case pext corresponds to one electron and one positive ion
beginning their existence at some point in the plasma and moving with relatively high velocities.

(k. I ind- Fig. 5. The equivalent circuit of a multicomponent
p"(~) 0  jC 1 C2  C. I kw plasma driven by a charge source.

The above description, however, is not adequate for the study of fluctuations in any of the

components of the plasma. We have seen in Sec. I-C that for this problem we need to know the
induced charge on the component in question when an external potential is acting on this compo-

nent. Had the network of Fig. 5 been a real electric network, then we could compute the desired
response by making a "plier's entry" at the jth branch. Introducing a potential at this entry, we

could calculate the charge induced on the jth capacitor, and therefore the response function.

This is equivalent to the calculations that would have been required to solve the system of equa-

tions of Sec. II-B. The network for the calculation of the response to an applied potential is shown

in Fig. 6. It is obvious that we can use this network for the calculation of any desired transfer

function, that is, the response at the ith capacitor which is the consequence of an applied potential

through a plier's entry at the jth branch.

pjn ckw Fo-1, cCO ' I ... T2 -- T-P. O L 1 o T
O!X (kw) *OP

t
c NO (ku) N

L(a) Mb

Fig. 6. The equivalent circuit of a multicomponent Fig. 7. The equivalent circuit for: (a) electrons

plasma driven by an external potential. in a positive sea and (b) electrons and ions.

As a first application, consider a plasma with electrons in a positive sea. The equivalent

network is shown in Fig. 7(a-b). Since the capacitors are in series, we have
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Pind C 0 Ce ext( C(k ) ext(k)e n C 0 + C e

Introducing the values of the C's from Eq. (66b), we have

k Eek) i
C e (k r ' (67)

Ee(kco)

which is the same as the value obtained in Part I, Eq. (20). The second application concerns the

electron-ion plasma. From the circuit of Fig. 7(b) we obtain

- (C 0 + C i ) C e
Cee(k0o) - C 0 + Ci + C (68)

k E L(-kc)RL(ku) - 1
- k L - (69)

4 1 (kw) + C L (kw)- I

This is the response function required to compute the fluctuation spectrum of the electrons in the

presence of ions and is pertinent to the incoherent scattering from the ionospheric plasma. Pro-

ceeding with the same technique, we find that the response of a plasma with different types of

ions is

(r )

Ce Iw - r + E~ E L(kw:)) .(L(iw) _ 1)70
k 2 j=--r+

=L r - (70)

e ( rc)+ )

where r is the number of types of ions. In a similar way, we can determine the transfer re-

sponse function for a two-component plasma when the potential is applied at the Ce branch and
the response is measured at the Ci branch. The result is

(11

t~ k 2 [Ee (kwo) - 1] [E . (kw) - 11

We can also find, by inspection, the total response, that is, the total charge induced when the

applied potential acts on Ce and Ci. The result is

k 2 ce (kwo) + E (kw) - 2 (2

C ~ (kw)+e =(4- -72

This completes the calculations for the derivation of a few of the response functions required to

describe a plasma. These functions can be put to immediate use for the calculation of the mean-

square fluctuations in a plasma. Referring to Sec. I-E, we find that the spectral quality of the

fluctuations is given by

S(kco) = !__T I Im {-C(kw)} (73)
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where C(kw) can be any of the functions we have derived in this section. Since, as a result of

the Kramer-Kronig relations, the integrated spectrum is given by the real part of C(kw) eval-

uated at w = 0,

S S(kw) dw = KT Re {-C(kO) , (74)

we can compute the integrated density fluctuation of any component with elementary algebra. In

fact, referring again to Part I, Eq. (25), we have

CiL(kO)i+(I /ix Dj) 2  (75)

where now

X -~- (76)Dj4re 2n .
3

In a multicomponent plasma we must have

r

j=-1

so that the total number of the different kinds of ions is equal to the number of electrons. If

negative ions are to be included, we must impose the condition,

r S
Znj+ =n o + I nil_

j=t j=1

Using the above results in Eq. (69) we readily obtain

1+k2 X2
i~ D

[6nee(0) 2 =no 22 (77)

T =T. Z+kXDe i

which is the familiar result of the density fluctuations in an electron-ion plasma. With equal ease

we find the fluctuation correlation between electrons and ions from the transfer response function.

For equal temperatures it has the value

nen 0 2 + (78)

k D

Finally, the total density fluctuation is

2k2
2k 2A

l6ntot 2 = no  2 D (79)
2 +k A D

Many more results can be computed (for example, I 6nik) 12) but these are left as exercises for

the reader. The spectral shape of the fluctuations can be computed from the response functions,

but the calculations are involved because of the many variables. In Fig. 8 we present a three-

dimensional plot of the fluctuation spectrum of the ion-electron plasma when the temperatures
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of the two constituents are the same. This plot represents the value of S(kc.) in Eq. (73) when

C(kcw) is given by Eq. (69).

Fig. 8. The fluctuation spectrum of an ion-electron Plasma as a function
of x =wAvg. The parameter is 1/kAXD, where k is the wave number and

XDis the Debye length.
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